College Forest Updates: McDonald & Dunn Forest Management Planning Process

Spring 2022 – End of 2024

OSU College of Forestry McDonald-Dunn Research Forest Faculty Planning Committee Meeting #24 Peavy Forest Science Center or Zoom (<u>Join Zoom Meeting</u>) 3 Oct 2024, noon-1pm

Agenda

Meeting Purpose:

- Share information on recent and upcoming efforts and events
- Discuss SAC input on scenarios modeled in Round 1v2 and SAC suggestions for scenarios to model in Round 2
- Finalize selection of scenarios to be modeled in Round 2
- Discuss next steps

Start Time	Activity
noon	Review where we've been and where we're going
12:05pm	Recap of v1.2 modeling efforts
12:10am	Discuss the modeling results Assess advantages and drawbacks of each of the original scenarios Finalize selection of new scenarios to investigate
12:50pm	Update on small group efforts Guidance for <i>Ecosystems of Concern</i> - riparian Guidance for <i>Ecosystems of Concern</i> - oak and prairie
12:55pm	Our anticipated next steps Discuss Round 2 modeling results Explore ideas on alternative sources of revenue Discuss definitions of maximum ages of trees or stands harvested
noon	Adjourn

MCDONALD-DUNN RESEARCH FOREST PLANNING PROCESS

The OSU College of Forestry is developing a new management plan for the McDonald and Dunn Research Forests, which is anticipated to be ready for implementation in 2025. The new research forest plan will reflect the college's diverse values, and will position the McDonald-Dunn Research Forest to be a model example of multiple value forest management. Management decisions and activities on the McDonald-Dunn Research Forest will be driven by research agendas, education and demonstration opportunities, and considerations of an inclusive balance of forest uses and values. The full intent of the research forests is described in the <u>Vision, Mission, and Goals</u>.

The plan is being crafted with input from diverse voices. Two committees, comprised of 23 individuals total, have been providing input throughout the planning process. One group, the **Stakeholder Advisory Committee (SAC)** is made up of individuals external to the university with representation from Tribal natural resource managers, state and local agencies, NGOs, private industry, and forest neighbors, and another group, the **Faculty Planning Committee (FPC)**, has representation from 5 academic departments across OSU, providing expertise on all aspects of forest management. <u>Members of the Stakeholder Advisory Committee and Faculty Planning Committee</u>

Research forest staff are not members of the SAC or FPC, but are involved in discussions as needed, as technical resources. They serve in an ex-officio capacity.

The dean of the College of Forestry will make all final decisions regarding the new research forest management plan.

Once a plan has been adopted, a Research Forest Technical Advisory Committee will be formed. This committee will provide an avenue for research forest staff to seek guidance on various forest management issues that arise during the implementation of the new forest plan, review annual reports, consider exceptions to land allocation designations, and work with the dean to appoint additional committees and task forces as needed.

The process of developing the new management plan will involve opportunities for public input, including two Community Listening Sessions to gather information on aspirations and concerns of forest users early in the planning process, two Community Input Sessions to gather input on forest land allocation decisions late in the planning process, a <u>webform</u> through which written comments can be provided, and an <u>email</u> to which written questions can be sent. We usually respond within 14 days.

SUBMIT YOUR QUESTIONS

STAY CONNECTED

SUBMIT YOUR COMMENTS

Aug. 31, 2022, Community Listening Session (agenda, presentation, meeting summary)

- Nov. 7, 2022, Community Listening Session (agenda, presentation, video recording, meeting summary)
- Mar. 21 & 22, 2023, Academic User Listening Sessions (open forums)

including the questions received during the session is available here.

• June 5, 2024, Community Input Session (presentation, video recording, additional material) - Thank you for your comments and feedback at the Community Input Session. A Q&A

Community Input and Listening Sessions

June 14, 2022, SAC and FPC Joint Kickoff Meeting (agenda, video, meeting summary)

Sept. 16, 2022, FPC Meeting (agenda, presentation, meeting summary)

- Oct. 11, 2022, FPC Meeting (agenda, presentation, video recording, meeting summary)
- Oct. 25, 2022, FPC Meeting (agenda, presentation, video recording, meeting summary)
- Nov. 22, 2022, FPC Meeting (agenda, presentation, video recording, meeting summary)

- provided in planning the future of the McDonald-Dunn Research Forests and is committed to listening to and considering all perspectives with respect. An apology for these remarks was made during the Stakeholder Advisory Committee meeting on Dec 13.
- Dec. 6, 2022, FPC Meeting (agenda, presentation, video recording, meeting summary) Remarks made by an individual during the Dec. 6 Faculty Planning Committee meeting do not reflect the values of the university or the College of Forestry, or our shared commitment to respectful discussion and engagement. The College appreciates all input being
- Dec. 20, 2022, FPC Meeting (agenda, presentation, video recording, meeting summary)
- Jan. 23, 2023, FPC Meeting (agenda, presentation, video recording, meeting summary)
- Feb. 20, 2023, FPC Meeting (agenda, presentation, video recording, meeting summary) Feb. 6, 2023, FPC Meeting (agenda, presentation, video recording, meeting summary)
- Feb. 25, 2023, SAC and FPC Joint Field Tour
- Mar. 20, 2023, FPC Meeting (agenda, presentation, video recording, meeting summary) Mar. 6, 2023, FPC Meeting (agenda, presentation, video recording, meeting summary)
- May 1, 2023, FPC Meeting (agenda, presentation, video recording, meeting summary) Apr. 17, 2023, FPC Meeting (agenda, presentation, video recording, meeting summary) Mar. 27, 2023, SAC and FPC Joint Field Tour
- Nov. 28, 2023, FPC meeting (agenda, presentation, video recording, meeting summary) Nov. 14, 2023, FPC meeting (agenda, presentation, video recording, meeting summary) Oct. 31, 2023, FPC meeting (agenda, presentation, video recording, meeting summary) Oct. 17, 2023, FPC meeting (agenda, presentation, video recording, meeting summary) June 12, 2023, FPC Meeting (agenda, presentation, video recording, meeting summary)
- · Feb. 22, 2024, FPC Meeting (agenda, presentation, video recording, meeting summary) Jan. 25, 2024, FPC Meeting (agenda, presentation, video recording, meeting summary) Dec. 12, 2023, FPC meeting (agenda, presentation, video recording, meeting summary)
- May 30, 2024, FPC Meeting (agenda, presentation, video recording, meeting summary)
- process, and provide input on the implementation approach and communication strategies for long-term engagement and accountability. Sept 16, 2024, FPC Meeting (agenda, presentation, video recording, meeting summary)
- Faculty Planning Committee (FPC): This committee provides technical input related to the forest management plan. Members will help develop the new draft plan, independently assess modeled management scenarios, review various portions of the draft plan, help contribute to public input being evaluated and considered in the forest management planning
- Aug 30, 2022, SAC Meeting (agenda, presentation, meeting summary) June 14, 2022, SAC and FPC Joint Kickoff Meeting (agenda, video, meeting summary)
- Sept. 20, 2022, SAC Meeting (agenda, presentation, video recording, meeting summary)
- Dec. 5, 2022, SAC Meeting (agenda, presentation, video recording, meeting summary)
- Jan. 18, 2023, SAC Meeting (agenda, presentation, video recording, meeting summary) Dec. 13, 2022, SAC Meeting (agenda, video recording, meeting summary)
- Feb. 25, 2023, SAC and FPC Joint Field Tour
- Mar. 1, 2023, SAC Meeting (agenda, presentation, video recording, meeting summary)
- Apr. 13, 2023, SAC Meeting (agenda, presentation 1, presentation 2, video recording, meeting summary) Mar. 27, 2023, SAC and FPC Joint Field Tour
- Jan. 30, 2024, SAC Meeting (agenda, presentation)
- June 3, 2024, SAC Meeting (agenda, presentation, video recording)
- Sept 25, 2024, SAC Meeting (agenda, presentation, video recording)
- Committee and Dean.
- Stakeholder Advisory Committee (SAC): This committee engages a broad and diverse array of voices and perspectives in the planning process. The primary role of the SAC is to provide recommendations regarding the balance of forest uses, values and management practices and helps to ensure that broader stakeholder and public input is understood and reflected. SAC members are requested to share concerns and aspirations regarding the management of the forests to contribute to community expectations being understood by College of Forestry leaders and will be reflected in the alternative scenarios to be developed and evaluated during the management planning process. The SAC is not a decision-making body, but will work in tandem with the FPC to inform the development of a new management plan that will ultimately be reviewed and approved by the College of Forestry Executive

• Oct. 3, 2024, 12-1pm, Faculty Planning Committee Meeting (open to the public to listen remotely through Zoom but not comment; video recording will be posted online after the

PAST MEETINGS & EVENTS

Zoom link: https://oregonstate.zoom.us/j/95431820037?pwd=C6UhzEyALS1pI46XobOYkEHUjbwyl3.1

meeting)

McDonald-Dunn Research Forest Management Planning Process

What conditions do we intend to create on the forest?

- 5 'Forest Management Strategies' for the new plan
- A. Even-aged, short rotation
- **B. Even-aged, long rotation**
- C. Multi-aged, multi-species
- **D. Managed reserves**
- E. Ecosystems of concern (oak woodlands, meadows, riparian)

How will the modeling results help us make decisions?

Modeling of 5 Scenarios to Evaluate Tradeoffs

.

	2024					
Proportion	Scenario A (baseline)	Scenario B (lots of EASR)	Scenario C (lots of EALR)	Scenario D (lots of MAMS)	Scenario E (lots of MR & EOC)	
Even-aged, short rotation	25%	39%	15%	10%	15%	
Even-aged, long rotation	27%	15%	39%	10%	15%	
Multi-aged/multi-species	20%	10%	10%	39%	15%	
Managed reserve	4%	10%	10%	15%	19%	
Ecosystems of concern	6%	10%	10%	10%	19%	
Long term learning + non-forest *	17%	17%	17%	17%	17%	
TOTAL	100%	100%	100%	100%	100%	

* long-term learning + non-forest = acreage unavailable for allocation because held for long-term research or roads, powerlines, lake, quarry, etc. А D

Even-aged, short rotation

- Even-aged, long rotation
- Multi-aged/multi-species
- Managed reserve

1 L.

- Ecosystems of concern
- Long term learning*

How will we assess tradeoffs among the 5 land allocation scenarios?

How will we assess tradeoffs among scenarios?

Forest Value		What are we trying to measure?
Biodiversity		Habitat suitability of focal taxa (bees, early successional birds, late successional birds, red tree voles, ungulates, amphibians)
Forest carbon		Amount of forest carbon (live & dead trees, shrubs, herbs, litter)
Forest products		Volume of timber harvested
Recreation acceptability	汐	Perceptions of recreationists of aesthetic acceptability
Resilience - density		Resilience as related to tree density and stand conditions
Resilience - composition		Resilience as related to degree of dominance of Douglas-fir
Revenue - net	•••	Total revenue derived from timber less operational expenses
Wildfire resistance		Degree of resistance to wildfire

Results were presented 4 ways

- Comparison of values across the 5 initial scenarios, color-coded to facilitate relative comparisons with the baseline (current conditions)
- Comparison of values across the 5 initial scenarios, color-coded to highlight lowest and highest values for each forest characteristic
- 3. Highest possible values for each forest characteristic to set expectations
- 4. Scenarios that maximize each of the forest characteristics

	2024	季葉 鼻母			S 11
Forest Value (averaged across 5-year period)	Scenario A (baseline)	Scenario B (lots of EASR)	Scenario C (lots of EALR)	Scenario D (lots of MAMS)	Scenario E (lots of MR & EOC)
Biodiversity (avg across all taxa)	1.80	1.86	1.83	2.13	2.01
Forest carbon	770,133T	946,926T	885,224T	1,039,536T	1,117,992T
Forest products (per 1-yr period)	5.5 MMBF	4.1 MMBF	5.1 MMBF	4.2 MMBF	3.8 MMBF
Net revenue (per 1-yr period)	\$1.00M	\$426K	\$812K	\$550K	\$307K
Recreation acceptability	3.42	3.44	3.48	3.58	3.60
Resilience - density	2.87	2.46	2.59	2.68	2.21
Resilience - composition	2.58	2.71	2.54	2.65	2.66
Wildfire resistance	2.43	2.42	2.43	2.57	2.44
Forest Value (averaged across 5-year period)	2024 Scenario A (baseline)	Scenario B (lots of EASR)	Scenario C (lots of EALR)	Scenario D (lots of MAMS)	Scenario E (lots of MR & EOC)
Biodiversity (avg across all taxa)	1.80	1.86	1.83	2.13	2.01
Forest carbon	770 133T	04C 02CT			
	110,2001	946,9261	885,2241	1,039,5361	1,117,9921
Forest products (per 1-yr period)	5.5 MMBF	4.1 MMBF	5.1 MMBF	1,039,5361 4.2 MMBF	1,117,9921 3.8 MMBF
Forest products (per 1-yr period) Net revenue (per 1-yr period)	5.5 MMBF \$1.00M	4.1 MMBF \$426K	885,2241 5.1 MMBF \$812K	1,039,5361 4.2 MMBF \$550K	1,117,9921 3.8 MMBF \$307K
Forest products (per 1-yr period) Net revenue (per 1-yr period) Recreation acceptability	5.5 MMBF \$1.00M 3.42	4.1 MMBF \$426K 3.44	885,2241 5.1 MMBF \$812K 3.48	1,039,5361 4.2 MMBF \$550K 3.58	1,117,9921 3.8 MMBF \$307K 3.60
Forest products (per 1-yr period) Net revenue (per 1-yr period) Recreation acceptability Resilience - density	5.5 MMBF \$1.00M 3.42 2.87	946,9281 4.1 MMBF \$426K 3.44 2.46	885,2241 5.1 MMBF \$812K 3.48 2.59	1,039,5361 4.2 MMBF \$550K 3.58 2.68	1,117,9921 3.8 MMBF \$307K 3.60 2.21
Forest products (per 1-yr period) Net revenue (per 1-yr period) Recreation acceptability Resilience - density Resilience - composition	5.5 MMBF \$1.00M 3.42 2.87 2.58	946,9281 4.1 MMBF \$426K 3.44 2.46 2.71	885,2241 5.1 MMBF \$812K 3.48 2.59 2.54	1,039,5361 4.2 MMBF \$550K 3.58 2.68 2.65	1,117,9921 3.8 MMBF \$307K 3.60 2.21 2.66

4444

南田制,

		Forest Value	Highest possible	
Forest Value	Highest possible	Bees	1.60	
Biodiversity - all taxa	2.37	Fault canal binds	1.00	
Forest carbon	1,239,618 T	Early seral birds	1.00	
Forest products	6.5 MMBF	Late seral birds	4.01	
Net revenue	\$1.4 mil	Red tree voles	1.39	
Besilience - density	4.04	Amphibians	3.96	
Resilience - composition	4.48	Ungulates	4.13	
Wildfire resistance	3.35			

v1.2 Assessing tradeoffs among land allocation scenarios

Relative comparison with baseline scenario, showing raw numbers & color-coded % change -

Considerable increase (>50% increase)

ecrease

						Modest increase (10- 50% increase)
	2024			A LAND		Little change (10% increase – 10%
Forest Value	Scenario A (baseline)	Scenario B (lots of EASR)	Scenario C (lots of EALR)	Scenario D (lots of MAMS)	Scenario E (lots of MR & EOC)	Modest decrease (10 50% decrease)
Biodiversity (avg across all taxa)	1.80	1.86	1.83	2.13	2.01	Considerable decreas
Forest carbon	770,133T	946,926T	885,224T	1,039,536T	1,117,992T	(>50% decrease)
Forest products (per 1-yr period)	5.5 MMBF	4.1 MMBF	5.1 MMBF	4.2 MMBF	3.8 MMBF	And the said
Direct/indirect jobs sustained (per 1-yr period)	~62 jobs	~46 jobs	~58 jobs	~47 jobs	~43 jobs	- Tria
Net revenue (per 1-yr period)	\$1.0M	\$426K	\$812K	\$550K	\$307K	
Recreation acceptability	3.42	3.44	3.48	3.58	3.60	
Resilience - density	2.87	2.46	2.59	2.68	2.21	
Resilience - composition	2.58	2.71	2.54	2.65	2.66	В
Wildfire resistance	2.43	2.42	2.43	2.57	2.44	
bees	0.76	0.79	0.80	0.77	0.87	c
early seral birds	1.16	1.11	1.09	0.99	0.95	
late seral birds	2.42	2.54	2.49	3.33	3.05	
red tree voles	0.65			0.97		
amphibians	2.93	2.96	2.98	3.46	3.29	
	2.00	0.00	0.74	0.07	0.04	

2.90

v1.2 - lowest and highest values for each metric among 5 scenarios

	2024				
Forest Value	Scenario A (baseline)	Scenario B (lots of EASR)	Scenario C (lots of EALR)	Scenario D (lots of MAMS)	Scenario E (lots of MR & EOC)
Biodiversity - all taxa	1.80	1.86	1.83	2.13	2.01
Forest carbon	770,133T	946,926T	885,224T	1,039,536T	1,117,992 T
Forest products (per 1-yr period)	5.5 MMBF	4.1 MMBF	5.1 MMBF	4.2 MMBF	3.8 MMBF
Net revenue (per 1-yr period)	\$1.0 mil	\$426K	\$812K	\$550K	\$307K
Recreation acceptability	3.42	3.44	3.48	3.58	3.60
Resilience - density	2.87	2.46	2.59	2.68	2.21
Resilience - composition	2.58	2.71	2.54	2.65	2.66
Wildfire resistance	2.43	2.42	2.43	2.57	2.44
		A PRESS	The starting	a state for the	
Bees	0.76	0.79	0.80	0.77	0.87
Early Seral Birds	1.16	1.11	1.09	0.99	0.95
Late Seral Birds	2.42	2.54	2.49	3.33	3.05
Red Tree Voles	0.65	1.06	0.92	0.97	1.08
Amphibians	2.93	2.96	2.98	3.46	3.29
Ungulates	2.90	2.68	2.71	3.25	2.81

v1.2 Benchmarking – maximum values for each metric in any 5-year period, when optimized

Forest Value	Highest possible
Biodiversity - all taxa	2.37
Forest carbon	1,239,618 T
Forest products	6.5 MMBF
Net revenue	\$1.4 mil
Resilience - density	4.04
Resilience - composition	4.48
Wildfire resistance	3.35
Bees	1.60
Early Seral Birds	1.66
Late Seral Birds	4.01
Red Tree Voles	1.39
Amphibians	3.96
Ungulates	4.13

Scenarios that maximize each forest characteristic

Moving to Round 2 of Modeling

- Four questions addressed by FPC and SAC:
 - 1. Which of the 5 scenarios do you find most preferable, and why?
 - 2. Which of the 5 scenarios you find least preferable, and why?
 - 3. Which additional scenario would you like to see explored in Round 2?
 - 4. What values would you most like to see increased or decreased?

FPC Initial Ideas on Additional Scenarios to Investigate

Tentative FPC ideas on additional scenarios to model

	Scenario F (mix of C&D)	Scenario G (another mix of C&D)	Scenario H (lots of MR, equal EALR & MAMS)	Scenario I (equal EASR, EALR, MAMS)	Scenario J (lots of MAMS)	Scenario K (lots of EALR)	Scenario L (another mix of C&D)
Even-aged, short rotation	11%	14%	10%	21%	8%	8%	10%
Even-aged, long rotation	26%	35%	24%	21%	8%	50%	20%
Multi-aged/multi-species	26%	20%	24%	21%	50%	8%	33%
Managed reserve	10%	8%	15%	10%	8%	8%	10%
Ecosystems of concern	10%	6%	10%	10%	8%	8%	10%
Long term learning + non- forest *	17%	17%	17%	17%	17%	17%	17%
TOTAL	100%	100%	100%	100%	100%	100%	100%

* long-term learning + non-forest = acreage unavailable for allocation because held for long-term research or roads, powerlines, lake, quarry, etc.

SAC Input on Most Preferred, Least Preferred, & Additional Scenarios to Investigate

Moving to Round 2 of Modeling

• Four questions:

- 1. Which of the 5 scenarios do you find most preferable, and why?
- 2. Which of the 5 scenarios you find least preferable, and why?
- 3. Which additional scenario would you like to see explored in Round 2?
- 4. What values would you most like to see increased or decreased?
- SAC input

	SAC ①	SAC (2)	SAC ③	SAC ④	SAC (5)	SAC 6	SAC (7)
Most preferable (original)	C, then D		C and D	D		C, then D	
Least preferable (original)	В	•	B and E			В	
Most preferable (FPC)	Н	high MAMS, Iow EASR		Wants to see all suggestions modeled	H and J	H; don't get rid of all EASR	н
Least preferable (FPC)	get rid of all EASR	I					
Most important forest values	C, forest products, net revenue		rec	biodiversity, net revenue		C, forest products, net revenue, resilience	

Tentative FPC ideas and SAC input on additional scenarios to model

	Scenario F (mix of C&D)	Scenario G (another mix of C&D)	Scenario H (lots of MR, equal EALR & MAMS)	Scenario I (equal EASR, EALR, MAMS)	Scenario J (lots of MAMS)	Scenario K (lots of EALR)	Scenario L (another mix of C&D)	Scenario M (no EASR)
Even-aged, short rotation	11%	14%	10%	21%	8%	8%	10%	
Even-aged, long rotation	26%	35%	24%	21%	8%	50%	20%	35%
Multi-aged/multi-species	26%	20%	24%	21%	50%	8%	33%	30%
Managed reserve	10%	8%	15%	10%	8%	8%	10%	8%
Ecosystems of concern	10%	6%	10%	10%	8%	8%	10%	10%
Long term learning + non- forest *	17%	17%	17%	17%	17%	17%	17%	17%
TOTAL	100%	100%	100%	100%	100%	100%	100%	100%

* long-term learning + non-forest = acreage unavailable for allocation because held for long-term research or roads, powerlines, lake, quarry, etc.

Next Steps

Tentative timeline for upcoming events

- Thurs, Oct 3 FPC mtg #24 to finalize decision on what to model in Round II
- Oct 4-11 Round II modeling
- ~Oct 16-21 FPC mtg #25 to discuss Round II results and weigh in on preferred scenario
- ~Oct 22, 23, or 24 SAC mtg #11 to discuss Round II results and weigh in on preferred scenario
- ~Oct 28, 29, 30 2nd CIS to discuss preferences among scenarios and weigh in on preferred scenario

OCTOBER 2024

SUN	MON	TUE	WED	THU	FRI	SAT
29	30	1	2	³ FPC	4	5
6	7	8	9	10	11	12
13	14	15	16 FPC?	17 FPC?	18 FPC?	19
20	21 FPC?	22 SAC?	23 SAC?	24 SAC?	25	26
27	28 CIS?	29 CIS?	30 CIS?	31	1	2